agentMET4FOF - Metrological Agent-based system

agentMET4FOF is a Python library developed at the Institute for Manufacturing of the University of Cambridge (UK) as part of the European joint Research Project EMPIR 17IND12 Met4FoF.

For the agentMET4FOF homepage go to GitHub.

agentMET4FOF is written in Python 3.

https://circleci.com/gh/bangxiangyong/agentMET4FOF.svg?style=shieldCircleCI https://readthedocs.org/projects/agentmet4fof/badge/?version=latestDocumentation Status https://codecov.io/gh/bangxiangyong/agentMet4FoF/branch/master/graph/badge.svgCodecov Badge

Multi-Agent System for Metrology for Factory of the Future (Met4FoF) Code

This is supported by European Metrology Programme for Innovation and Research (EMPIR) under the project Metrology for the Factory of the Future (Met4FoF), project number 17IND12. (https://www.ptb.de/empir2018/met4fof/home/)

About

  • How can metrological input be incorporated into an agent-based system for addressing uncertainty of machine learning in future manufacturing?
  • Includes agent-based simulation and implementation
  • Readthedocs documentation is available at (https://agentmet4fof.readthedocs.io)

Use agentMET4FOF

The easiest way to get started with agentMET4FOF is navigating to the folder in which you want to create a virtual Python environment (venv), create one based on Python 3.6 or later, activate it, first install numpy, then install agentMET4FOF from PyPI.org and then work through the tutorials or examples. To do this, issue the following commands on your Shell:

$ cd /LOCAL/PATH/TO/ENVS
$ python3 -m venv agentMET4FOF_venv
$ source agentMET4FOF_venv/bin/activate
(agentMET4FOF_venv) $ pip install numpy
Collecting numpy
...
Successfully installed numpy-...
(agentMET4FOF_venv) $ pip install agentMET4FOF
Collecting agentMET4FOF
...
Successfully installed agentMET4FOF-... ...
(agentMET4FOF_venv) $ python
Python ... (default, ..., ...) 
[GCC ...] on ...
Type "help", "copyright", "credits" or "license" for more information.
>>> from agentMET4FOF_tutorials import tutorial_1_generator_agent
>>> tutorial_1_generator_agent.demonstrate_generator_agent_use()
Starting NameServer...
Broadcast server running on 0.0.0.0:9091
NS running on 127.0.0.1:3333 (127.0.0.1)
URI = PYRO:Pyro.NameServer@127.0.0.1:3333
INFO [2020-02-21 19:04:26.961014] (AgentController): INITIALIZED
INFO [2020-02-21 19:04:27.032258] (Logger): INITIALIZED
 * Serving Flask app "agentMET4FOF.dashboard.Dashboard" (lazy loading)
 * Environment: production
   WARNING: This is a development server. Do not use it in a production deployment.
   Use a production WSGI server instead.
 * Debug mode: off
 * Running on http://127.0.0.1:8050/ (Press CTRL+C to quit)
...

Now you can visit http://127.0.0.1:8050/ with any Browser and watch the SineGenerator agent you just spawned.

To get some insights and really get going please visit agentMET4FOF.readthedocs.io .

Get started developing

First clone the repository to your local machine as described here. To get started with your present Anaconda installation just go to Anaconda prompt, navigate to your local clone

cd /LOCAL/PATH/TO/agentMET4FOF

and execute

conda env create --file environment.yml 

This will create an Anaconda virtual environment with all dependencies satisfied. If you don’t have Anaconda installed already follow this guide first, then create the virtual environment as stated above and then proceed.

Alternatively, for non-conda environments, you can install the dependencies using pip

pip install -r requirements.txt

First take a look at the tutorials and examples or start hacking if you already are familiar with agentMET4FOF and want to customize your agents’ network.

Alternatively, watch the tutorial webinar here

Updates

  • Implemented base class AgentMET4FOF with built-in agent classes DataStreamAgent, MonitorAgent
  • Implemented class AgentNetwork to start or connect to a agent server
  • Implemented with ZEMA prognosis of Electromechanical cylinder data set as use case https://zenodo.org/badge/DOI/10.5281/zenodo.1326278.svgDOI
  • Implemented interactive web application with user interface

Screenshot of web visualization

https://raw.githubusercontent.com/bangxiangyong/agentMET4FOF/develop/docs/screenshot_met4fof.pngWeb Screenshot

Note

  • In the event of agents not terminating cleanly, run

    taskkill /f /im python.exe /t
    

    in Windows Command Prompt to terminate all background python processes.

Tutorial 1 - A simple pipeline to plot a signal

First we define a simple pipeline of two agents, of which one will generate a signal (in our case a SineGeneratorAgent) and the other one plots the signal on the dashboard (this is always a MonitorAgent).

We define a SineGeneratorAgent for which we have to override the functions init_parameters() & agent_loop() to define the new agent’s behaviour.

  • init_parameters() is used to setup the input data stream and potentially other necessary parameters.
  • agent_loop() will be endlessly repeated until further notice. It will sample by sample extract the input data stream’s content and push it to all agents connected to SineGeneratorAgent’s output channel by invoking send_output().

The MonitorAgent is connected to the SineGeneratorAgent’s output channel and per default automatically plots the output.

Each agent has an internal current_state which can be used as a switch to change the behaviour of the agent. The available states are listed here.

As soon as all agents are initialized and the connections are set up, the agent network is started by accordingly changing all agents’ state simultaneously.

[1]:
# %load tutorial_1_generator_agent.py
from agentMET4FOF.agents import AgentMET4FOF, AgentNetwork, MonitorAgent
from agentMET4FOF.streams import SineGenerator


class SineGeneratorAgent(AgentMET4FOF):
    """An agent streaming a sine signal

    Takes samples from the :py:mod:`SineGenerator` and pushes them sample by sample
    to connected agents via its output channel.
    """
    _sine_stream: SineGenerator

    def init_parameters(self):
        """Initialize the input data

        Initialize the input data stream as an instance of the
        :py:mod:`SineGenerator` class
        """
        self._sine_stream = SineGenerator()

    def agent_loop(self):
        """Model the agent's behaviour

        On state *Running* the agent will extract sample by sample the input data
        streams content and push it via invoking :py:method:`AgentMET4FOF.send_output`.
        """
        if self.current_state == "Running":
            sine_data = self._sine_stream.next_sample()  # dictionary
            self.send_output(sine_data["x"])


def demonstrate_generator_agent_use():
    # Start agent network server.
    agent_network = AgentNetwork()

    # Initialize agents by adding them to the agent network.
    gen_agent = agent_network.add_agent(agentType=SineGeneratorAgent)
    monitor_agent = agent_network.add_agent(agentType=MonitorAgent)

    # Interconnect agents by either way:
    # 1) by agent network.bind_agents(source, target).
    agent_network.bind_agents(gen_agent, monitor_agent)

    # 2) by the agent.bind_output().
    gen_agent.bind_output(monitor_agent)

    # Set all agents' states to "Running".
    agent_network.set_running_state()

    # Allow for shutting down the network after execution
    return agent_network


if __name__ == "__main__":
    demonstrate_generator_agent_use()

Starting NameServer...
Broadcast server running on 0.0.0.0:9091
NS running on 127.0.0.1:3333 (127.0.0.1)
URI = PYRO:Pyro.NameServer@127.0.0.1:3333
INFO [2020-04-24 09:21:23.002156] (AgentController): INITIALIZED
INFO [2020-04-24 09:21:23.200110] (SineGeneratorAgent_1): INITIALIZED
 * Serving Flask app "agentMET4FOF.dashboard.Dashboard" (lazy loading)
 * Environment: production
   WARNING: This is a development server. Do not use it in a production deployment.
   Use a production WSGI server instead.
 * Debug mode: off
INFO [2020-04-24 09:21:23.294149] (MonitorAgent_1): INITIALIZED
[2020-04-24 09:21:23.360214] (SineGeneratorAgent_1): Connected output module: MonitorAgent_1
SET STATE:   Running
[2020-04-24 09:21:24.218709] (SineGeneratorAgent_1): Pack time: 0.000897
[2020-04-24 09:21:24.223207] (SineGeneratorAgent_1): Sending: [0.]
[2020-04-24 09:21:24.225895] (MonitorAgent_1): Received: {'from': 'SineGeneratorAgent_1', 'data': array([0.]), 'senderType': 'SineGeneratorAgent', 'channel': 'default'}
[2020-04-24 09:21:24.226708] (MonitorAgent_1): Tproc: 0.00017
[2020-04-24 09:21:25.217698] (SineGeneratorAgent_1): Pack time: 0.000419
[2020-04-24 09:21:25.220045] (SineGeneratorAgent_1): Sending: [0.47942554]
[2020-04-24 09:21:25.221406] (MonitorAgent_1): Received: {'from': 'SineGeneratorAgent_1', 'data': array([0.47942554]), 'senderType': 'SineGeneratorAgent', 'channel': 'default'}
[2020-04-24 09:21:25.223795] (MonitorAgent_1): Memory: {'SineGeneratorAgent_1': array([0.        , 0.47942554])}
[2020-04-24 09:21:25.224696] (MonitorAgent_1): Tproc: 0.00264
[2020-04-24 09:21:26.217785] (SineGeneratorAgent_1): Pack time: 0.000415
[2020-04-24 09:21:26.218995] (SineGeneratorAgent_1): Sending: [0.84147098]
[2020-04-24 09:21:26.220107] (MonitorAgent_1): Received: {'from': 'SineGeneratorAgent_1', 'data': array([0.84147098]), 'senderType': 'SineGeneratorAgent', 'channel': 'default'}
[2020-04-24 09:21:26.222038] (MonitorAgent_1): Memory: {'SineGeneratorAgent_1': array([0.        , 0.47942554, 0.84147098])}
[2020-04-24 09:21:26.223223] (MonitorAgent_1): Tproc: 0.002481
[2020-04-24 09:21:27.216058] (SineGeneratorAgent_1): Pack time: 0.000131
[2020-04-24 09:21:27.216323] (SineGeneratorAgent_1): Sending: [0.99749499]
[2020-04-24 09:21:27.216876] (MonitorAgent_1): Received: {'from': 'SineGeneratorAgent_1', 'data': array([0.99749499]), 'senderType': 'SineGeneratorAgent', 'channel': 'default'}
[2020-04-24 09:21:27.217220] (MonitorAgent_1): Memory: {'SineGeneratorAgent_1': array([0.        , 0.47942554, 0.84147098, 0.99749499])}
[2020-04-24 09:21:27.217288] (MonitorAgent_1): Tproc: 0.000314
[2020-04-24 09:21:28.215905] (SineGeneratorAgent_1): Pack time: 0.000102
[2020-04-24 09:21:28.216367] (MonitorAgent_1): Received: {'from': 'SineGeneratorAgent_1', 'data': array([0.90929743]), 'senderType': 'SineGeneratorAgent', 'channel': 'default'}
[2020-04-24 09:21:28.216186] (SineGeneratorAgent_1): Sending: [0.90929743]
[2020-04-24 09:21:28.216623] (MonitorAgent_1): Memory: {'SineGeneratorAgent_1': array([0.        , 0.47942554, 0.84147098, 0.99749499, 0.90929743])}
[2020-04-24 09:21:28.216678] (MonitorAgent_1): Tproc: 0.000229
 * Running on http://127.0.0.1:8050/ (Press CTRL+C to quit)
<Figure size 432x288 with 0 Axes>

Tutorial 2 - A simple pipeline with signal postprocessing.

Here we demonstrate how to build a MathAgent as an intermediate to process the SineGeneratorAgent’s output before plotting. Subsequently, a MultiMathAgent is built to show the ability to send a dictionary of multiple fields to the recipient. We provide a custom on_received_message() function, which is called every time a message is received from input agents.

The received message is a dictionary of the form:

{
'from':agent_name,
'data': data,
'senderType': agent_class_name,
'channel':'channel_name'
}

By default, 'channel' is set to "default", however a custom channel can be set when needed, which is demonstrated in the next tutorial.

[1]:
# %load tutorial_2_math_agent.py
from agentMET4FOF.agents import AgentMET4FOF, AgentNetwork, MonitorAgent
from agentMET4FOF.streams import SineGenerator


# Define simple math functions.
def divide_by_two(numerator: float) -> float:
    return numerator / 2


def minus(minuend: float, subtrahend: float) -> float:
    return minuend - subtrahend


def plus(summand_1: float, summand_2: float) -> float:
    return summand_1+summand_2


class MathAgent(AgentMET4FOF):
    def on_received_message(self, message):
        data = divide_by_two(message['data'])
        self.send_output(data)

class MultiMathAgent(AgentMET4FOF):
    def init_parameters(self,minus_param=0.5,plus_param=0.5):
        self.minus_param = minus_param
        self.plus_param = plus_param

    def on_received_message(self, message):
        minus_data = minus(message['data'], self.minus_param)
        plus_data = plus(message['data'], self.plus_param)

        self.send_output({'minus':minus_data,'plus':plus_data})

class SineGeneratorAgent(AgentMET4FOF):
    def init_parameters(self):
        self.stream = SineGenerator()

    def agent_loop(self):
        if self.current_state == "Running":
            sine_data = self.stream.next_sample() #dictionary
            self.send_output(sine_data['x'])


def main():
    # start agent network server
    agentNetwork = AgentNetwork()
    # init agents
    gen_agent = agentNetwork.add_agent(agentType=SineGeneratorAgent)
    math_agent = agentNetwork.add_agent(agentType=MathAgent)
    multi_math_agent = agentNetwork.add_agent(agentType=MultiMathAgent)
    monitor_agent = agentNetwork.add_agent(agentType=MonitorAgent)
    # connect agents : We can connect multiple agents to any particular agent
    agentNetwork.bind_agents(gen_agent, math_agent)
    agentNetwork.bind_agents(gen_agent, multi_math_agent)
    # connect
    agentNetwork.bind_agents(gen_agent, monitor_agent)
    agentNetwork.bind_agents(math_agent, monitor_agent)
    agentNetwork.bind_agents(multi_math_agent, monitor_agent)
    # set all agents states to "Running"
    agentNetwork.set_running_state()

    # allow for shutting down the network after execution
    return agentNetwork


if __name__ == '__main__':
    main()



---------------------------------------------------------------------------
ModuleNotFoundError                       Traceback (most recent call last)
<ipython-input-1-e91ecde3d431> in <module>
      1 # %load tutorial_2_math_agent.py
----> 2 from agentMET4FOF.agents import AgentMET4FOF, AgentNetwork, MonitorAgent
      3 from agentMET4FOF.streams import SineGenerator
      4
      5

ModuleNotFoundError: No module named 'agentMET4FOF'

Tutorial 3 - An advanced pipeline with multichannel signals.

We can use different channels for the receiver to handle specifically each channel name. This can be useful for example in splitting train and test channels in machine learning Then, the user will need to implement specific handling of each channel in the receiving agent.

In this example, the MultiGeneratorAgent is used to send two different types of data - Sine and Cosine generator. This is done via specifying send_output (channel="sine") and send_output(channel="cosine").

Then on the receiving end, the on_received_message() function checks for message['channel'] to handle it separately.

Note that by default, MonitorAgent is only subscribed to the "default" channel. Hence it will not respond to the "cosine" and "sine" channel.

[1]:
# %load tutorial_3_multi_channel.py
from agentMET4FOF.agents import AgentMET4FOF, AgentNetwork, MonitorAgent
from agentMET4FOF.streams import SineGenerator, CosineGenerator


def minus(data, minus_val):
    return data-minus_val


def plus(data,plus_val):
    return data+plus_val


class MultiGeneratorAgent(AgentMET4FOF):
    def init_parameters(self):
        self.sine_stream = SineGenerator()
        self.cos_stream = CosineGenerator()

    def agent_loop(self):
        if self.current_state == "Running":
            sine_data = self.sine_stream.next_sample() #dictionary
            cosine_data = self.sine_stream.next_sample() #dictionary
            self.send_output(sine_data['x'], channel="sine")
            self.send_output(cosine_data['x'], channel="cosine")


class MultiOutputMathAgent(AgentMET4FOF):
    def init_parameters(self,minus_param=0.5,plus_param=0.5):
        self.minus_param = minus_param
        self.plus_param = plus_param

    def on_received_message(self, message):
        """
        Checks for message['channel'] and handles them separately
        Acceptable channels are "cosine" and "sine"
        """
        if message['channel'] == "cosine":
            minus_data = minus(message['data'], self.minus_param)
            self.send_output({'cosine_minus':minus_data})
        elif message['channel'] == 'sine':
            plus_data = plus(message['data'], self.plus_param)
            self.send_output({'sine_plus':plus_data})


def main():
    # start agent network server
    agentNetwork = AgentNetwork()
    # init agents
    gen_agent = agentNetwork.add_agent(agentType=MultiGeneratorAgent)
    multi_math_agent = agentNetwork.add_agent(agentType=MultiOutputMathAgent)
    monitor_agent = agentNetwork.add_agent(agentType=MonitorAgent)
    # connect agents : We can connect multiple agents to any particular agent
    # However the agent needs to implement handling multiple inputs
    agentNetwork.bind_agents(gen_agent, multi_math_agent)
    agentNetwork.bind_agents(gen_agent, monitor_agent)
    agentNetwork.bind_agents(multi_math_agent, monitor_agent)
    # set all agents states to "Running"
    agentNetwork.set_running_state()

    # allow for shutting down the network after execution
    return agentNetwork


if __name__ == '__main__':
    main()




---------------------------------------------------------------------------
ModuleNotFoundError                       Traceback (most recent call last)
<ipython-input-1-90d955fea48f> in <module>
      1 # %load tutorial_3_multi_channel.py
----> 2 from agentMET4FOF.agents import AgentMET4FOF, AgentNetwork, MonitorAgent
      3 from agentMET4FOF.streams import SineGenerator, CosineGenerator
      4
      5

ModuleNotFoundError: No module named 'agentMET4FOF'

agentMET4FOF agents

agentMET4FOF streams

class agentMET4FOF.streams.CosineGenerator(num_cycles=1000)[source]
class agentMET4FOF.streams.DataStreamMET4FOF[source]

Class for creating finite datastream for ML with x as inputs and y as target Data can be fetched sequentially using next_sample() or all at once all_samples()

For sensors data: The format shape for 2D data stream (num_samples, n_sensors) The format shape for 3D data stream (num_samples, sample_length , n_sensors)

all_samples()[source]

Returns all the samples in the data stream

Returns:samples
Return type:dict of the form {‘x’: current_sample_x, ‘y’: current_sample_y}
next_sample(batch_size=1)[source]

Fetches the samples from the data stream and advances the internal pointer current_idx

Parameters:batch_size (int) – number of batches to get from data stream
Returns:samples
Return type:dict of the form {‘x’: current_sample_x, ‘y’: current_sample_y}
class agentMET4FOF.streams.SineGenerator(num_cycles=1000)[source]
agentMET4FOF.streams.extract_x_y(message)[source]
Extracts features & target from message[‘data’] with expected structure such as :
  1. tuple - (x,y)
  2. dict - {‘x’:x_data,’y’:y_data}

Handle data structures of dictionary to extract features & target

Indices and tables

References

[Bang2019]Bang X. Yong, A. Brintrup Multi Agent System for Machine Learning Under Uncertainty in Cyber Physical Manufacturing System, 9th Workshop on Service Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future